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Abstract

Two Reynolds-averaged Navier-Stokes computer codes – one unstructured and one structured – are
applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto
Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-
Allmaras turbulence model is employed. The first case uses the method of manufactured solution and
is intended as a verification case. In other words, the CFD solution is expected to approach the exact
solution as the grid is refined. The second case is a validation case (comparison against experiment),
for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment
may prevent close agreement. The results from the two computer codes are also compared. This
exercise verifies that the codes are consistent both with the exact manufactured solution and with
each other. In terms of order property, both codes behave as expected for the manufactured solution.
For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very
low for both codes (whose results are nearly identical). Agreement with experiment is good at some
locations for particular variables, but there are also many areas where the CFD and experimental
uncertainties do not overlap.

1 Description of the Computer Codes

FUN3D [1–3] is a finite-volume RANS solver (either compressible or incompressible equations can
be solved) in which the flow variables are generally stored at the vertices of the mesh. FUN3D
solves the equations on mixed element grids, including tetrahedra, pyramids, prisms, and hexahedra
and also has a two-dimensional path. It employs an implicit upwind algorithm in which the inviscid
fluxes are obtained with a flux-splitting scheme. At interfaces delimiting neighboring control vol-
umes, the inviscid fluxes are computed using an approximate Riemann solver based on the values
on either side of the interface. For second-order accuracy, interface values are obtained by extrapo-
lation using gradients computed at the mesh vertices using an unweighted least-squares technique.
Limiting of the reconstructed values may be employed for flows with strong shocks. For all re-
sults presented in this paper, the convective flux scheme used is Roe’s flux difference splitting [4].
For tetrahedral meshes, the full viscous fluxes are discretized using a finite-volume formulation in
which the required velocity gradients on the dual faces are computed using the Green-Gauss theo-
rem. On tetrahedral meshes this is equivalent to a Galerkin type approximation. For non-tetrahedral
meshes, edge-based gradients are combined with Green-Gauss gradients, which improves the h-
ellipticity of the operator, and the complete viscous stresses are evaluated. The solution at each
time-step is updated with a backward Euler time-differencing scheme. At each time step, the linear
system of equations is approximately solved with either a multi-color point-implicit procedure or an
implicit-line relaxation scheme [5]. Local time-step scaling is employed to accelerate convergence
to steady-state. FUN3D is able to solve the RANS flow equations, either coupled or uncoupled
with the Spalart-Allmaras [6] (SA) one-equation turbulence model. The Menter SST Model [7] is
also available for uncoupled solutions. In this paper all computations are uncoupled and use the SA
model. By default, the turbulence advection terms are discretized using first-order upwinding.

An emerging capability in FUN3D is the ability to solve with a cell-centered discretization in-
stead of node-centered. Although this capability is not fully production-ready at this time, some
preliminary results will be shown for the manufactured solution. Also, in these cell-centered so-
lutions, the turbulence advection terms are discretized with a conservative second-order accurate
scheme.

CFL3D is a structured-grid upwind multi-zone CFD code that solves the generalized thin-layer
or full Navier-Stokes equations. [8] For all results in this paper, the full Navier-Stokes equations
have been employed. The code can use point-matched, patched, or overset grids and employs local
time-step scaling, grid sequencing and multigrid to accelerate convergence to steady stage. A time-
accurate mode is available, and the code can employ low-Mach number preconditioning for accuracy
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in computing low-speed steady-state flows. CFL3D is a cell-centered finite-volume method. It uses
third-order upwind-biased spatial differencing on the convective and pressure terms, and second-
order differencing on the viscous terms. Roe’s flux difference-splitting (FDS) method [4] is used
to obtain fluxes at the cell faces. The solution is advanced in time with an implicit approximate
factorization method. A wide variety of eddy-viscosity turbulence models are available in the code,
including nonlinear models. Only SA has been used in this study. Cross-derivative terms are ignored
in the turbulence model. The turbulence models are solved uncoupled from the mean flow equations,
and, unless otherwise specified by the user, are solved with first-order upwind turbulence advection
terms.

2 Discretization Uncertainty Estimation

The current procedure for the estimation of discretization uncertainty is based on the grid conver-
gence index (GCI) from Celik et al. [9]. The GCI on the fine grid is given by:

GCI21 =
1.25e21

a

(r21)p − 1
(1)

where

e21
a =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ (2)

andφ1 is the quantity of interest on the finest grid,φ2 is the quantity of interest on the next-finest
grid, r21 is the ratio of cell spacing from one grid to the next, andp is the order of accuracy of the
method.

In the current paper, the grids are all structured (solved as mixed-element type hexahedra in the
unstructured code), and successively coarser levels are constructed by removing every other grid
point in each coordinate direction. Thus,r21 = 2 for all results herein. When three grid levels are
available andr21 = r32 = 2, the orderp is computed from:

p =
1

ln(2)
(ln(ε32/ε21)) (3)

whereε32 = φ3−φ2 andε21 = φ2−φ1. When the quantityε32/ε21 < 0, the convergence is said to
be “oscillatory,” and when|ε32| < |ε21| the sequence is “divergent.” In either case, eq. (3) no longer
applies.

The discretization uncertainty,U , of the solution on the fine grid is defined by:

U = GCI21|φ1| (4)

However, as Eca and Hoekstra [10] point out, ifp < 1, uncertainty estimates tend to be over-
conservative, and, forp much higher than the theoretical order of the method, the uncertainty esti-
mates can be unreliable. Therefore, we adopt the following methodology for estimating the uncer-
tainty (some of these ideas are from Eca and Hoekstra):

• For0.95 ≤ p < 3.05, U = GCI21|φ1|

• For0 < p < 0.95: U = min(GCI21|φ1| , 1.25∆M )

• Forp ≥ 3.05: U = max(GCI∗21|φ1| , 1.25∆M )

where∆M is the maximum difference in absolute value between theφi on any of the three grid
levels used to determinep, andGCI∗21 is the same as eq. (1) except thatp is taken to be3:
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GCI∗21 =
1.25e21

a

(r21)3 − 1
(5)

For oscillatory convergence, the uncertainty is taken as:U = GCI∗∗21|φ1|, where a presumed
order of convergencep = 2 is assumed, and a higher factor of safety is employed (2.5 as opposed to
1.25):

GCI∗∗21 =
2.5e21

a

(r21)2 − 1
(6)

For divergence (|ε32| < |ε21|), the uncertainty is taken asU = 3∆M .

3 Manufactured Solution

The manufactured solution used is the same as that described as MS1 in Eca et al. [11] for flow on
a square domain0.5L ≤ x ≤ L and0 ≤ y ≤ 0.5L, namely:

u/uref = erf(η) (7)

v/uref =
1

σ
√

π

(
1− e−η2

)
(8)

p

ρu2
ref

= 0.5ln(2x− x2 + 0.25)ln(4y3 − 3y2 + 1.25) (9)

ν̃ = ν̃max

√
2ηνe0.5−η2

ν (10)

whereη = σy/x, σ = 4, ην = σνy/x, σν = 2.5σ, and ν̃max = 103ν. The Reynolds number
Re = urefL/ν = 106. The variableν̃ is the turbulence variable from the SA model, which is
related to the eddy viscosityνt via νt = ν̃fv1, wherefv1 = (ν̃/ν)3/[(ν̃/ν)3 + 357.911].

Note that FUN3D can be run using incompressible equations, but CFL3D is only a compressible
code. When solving the compressible equations, an additional exact solution variable of constant
total temperature everywhere in the domain was specified, based on an assumed freestream Mach
number of 0.2. Also for the compressible equations it was necessary to scaleu, v, andp appropri-
ately.

Although not shown, the codes were also run using the MS2 and MS4 exact solutions, but
in these cases the turbulence variable could be driven negative very near the wall over a portion
of the domain. This behavior is possibly a result of the fact that these turbulent exact solutions
have an asymptotic behavior near the wall that is dramatically different from the generally accepted
behavior [12, 13] ofνt ∝ y3. In fact, for MS2: νt ∝ y8, and for MS4: νt ∝ y16. For MS1
the behavior is more reasonable:νt ∝ y4. In Eca et al. [11] special handling of the turbulence
manufactured source term helped to avoid numerical difficulties; in FUN3D and CFL3D no such
special handling was performed.

It should also be pointed out here that the SA model used in FUN3D and CFL3D has minor
differences from that employed by Eca et al. In particular, Eca et al. leave out the termft2, which
is a part of the model as specified in Spalart and Allmaras [6]:

∂ν̃

∂t
+uj

∂ν̃

∂xj
= cb1(1−ft2)Ŝν̃−

[
cw1fw −

cb1

κ2
ft2

] (
ν̃

d

)2

+
1
σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(11)

where
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ft2 = ct3exp
(
−ct4χ

2
)

(12)

Leaving out theft2 term has a minor influence on the solution behavior. We include theft2 term
into our source terms defining the SA exact solution. Also, in FUN3D and CFL3D, an important
computational limit is placed on the variabler (which goes into the computation offw). The variable
r should remain positive to keep the solution well-behaved:

r =
ν̃

Ŝ∗κ2d2
(13)

where

Ŝ∗ = max
(
Ŝ, ε0

)
(14)

Ŝ = Ω +
ν̃

κ2d2
fv2 (15)

andε0 is a very small positive number. It was noticed for MS1 that ifŜ is not clipped for eq. (13),
the forcing term becomes unbounded at the locations wherer passes through zero.

For the manufactured solution, the exact solution was specified along the left, top, and right
boundaries for FUN3D (node-centered) and in two rows of ghost-cell centers for CFL3D. For
FUN3D (cell-centered), the exact solution and gradient for the viscous terms were specified along
these boundaries. The bottom wall used standard no-slip boundary conditions, with∂p/∂n = 0
(and, for compressible flow, either∂T/∂n = 0 in CFL3D orT = constant in FUN3D). The turbu-
lence variablẽν at the wall was set to zero.

Two sets of stretched grids were used. The first set, termed “sg1,” had a fine grid size of577 ×
577. Spacing was uniform in thex-direction (∆x = 0.00086806), and was stretched in they-
direction. The first grid point off the bottom wall was aty = 4.3403 × 10−5. A total of 5 nested
grid levels were employed:577 × 577, 289 × 289, 145 × 145, 73 × 73, and37 × 37. The second
grid set, termed “sg2,” had a fine grid size of289 × 1153. Spacing was uniform in thex-direction
(∆x = 0.00173611), and was stretched in they-direction. The first grid point off the bottom wall
was aty = 1 × 10−6. A total of 5 nested grid levels were employed:289 × 1153, 145 × 577,
73× 289, 37× 145, and19× 73.

To determine the discretization error, the exact manufactured source terms were added to the
Navier-Stokes equations, and the codes were converged to near machine-zero (10−14) residuals.
Various integral and point quantities were compared with the exact solution.

Fig. 1 shows error in drag (from the exact solutioncd = 16ln(2)ν/
√

π = 6.25706270620 ×
10−6) for results on sg1 using the two codes with both first- and second-order turbulence advection
terms. The “(cc)” indicates that the cell-centered version of FUN3D was used for one of the runs.
In this plot,N represents the total number of degrees of freedom (e.g., number of cell-centers or
grid points), so

√
1/N is a measure of the average grid spacingh. All results for this integral

quantity converge to the exact solution with second-order behavior on the finest grid levels. Note
that when using the compressible equations, it is necessary to remove the effect of variable density
when post-processing drag to compare with the exact solution specified for incompressible flow.

It is important to note that although the absolute value of errors in drag coefficient are monoton-
ically decreasing, the actual drag levels do not exhibit monotonic convergence until the finest three
grid levels. This can be seen in Fig. 2. Thecd, GCI, and uncertainty on the finest grid level are listed
in Table 1.

Figs. 3 and 4 show L1-norm errors for various quantities, using second-order and first-order
discretization for turbulence advection, respectively. In Fig. 3, convergence is second-order for all
quantities, as expected. For Fig. 4, convergence degrades to first-order. Results on the sg2 grid (with
finer normal spacing) are given in Fig. 5. Again, when the turbulence advection terms are discretized
second-order, the global error norms for all quantities converge second-order. It should be noted in
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Table 1. Thecd and its uncertainty on the finest grid for MS1 on sg1

Code Turbulence advection order cd approx GCI, % U(cd)
CFL3D 2nd 0.644531× 10−5 3.05 0.196577× 10−6

CFL3D 1st 0.638512× 10−5 4.26 0.271690× 10−6

FUN3D 2nd 0.644844× 10−5 5.09 0.327975× 10−6

FUN3D 1st 0.637872× 10−5 7.67 0.489037× 10−6

practice, however, that for most aerodynamic problems of interest, little practical influence of first-
order treatment of the turbulence advection terms has been found using typical grids.

Fig. 6 shows the convergence of various flow field quantities at a specific location in the domain
as a function ofh both grid sets. Both codes are approaching the exact solution, with the sg2 series
of grids generally converging in a “smoother” fashion than the sg1 series. Note that in some cases,
the convergence is oscillatory (non-monotonic), even on the finest grid levels.

4 Backward Facing Step Validation Case

The backward facing step case was run on the same series of hexahedral grids in both codes. Only
the node-centered formulation of FUN3D was employed, and both codes were run using first-order
discretization for turbulence advection. The finest grid consisted of255, 266 grid points (253, 952
cells), with minimum spacing at the bottom and top walls of1.5 × 10−4. This spacing yielded an
approximate averagey+ at the first cell-center of about0.25 on the finest grid. The grid wasnot
clustered with viscous spacing along the back face of the step, however: minimum spacing there
was0.0208333. Successively coarser grids were constructed by removing every-other point in each
coordinate direction. Fig. 7 shows the grid 3-levels-coarser than the finest grid (with only3968
cells). The grid clustering from the upstream near-wall region continued into the shear layer, with
some spreading.

All solid walls were solved as no-slip walls. In CFL3D these were treated as adiabatic, whereas
in FUN3D they were given a constant temperature equal to the freestream adiabatic temperature. At
the upstream boundary, the velocity and turbulence were specified according to the manufactured
solution given by the workshop organizers. At the downstream boundary, pressure was specified
(p/pref = 1.00149), and all other variables were extrapolated from the interior of the domain.

Convergence of various surface integral quantities with decreasing grid spacingh (=
√

1/N )
is shown in Fig. 8. These drag coefficients are defined in the standard way, as a force divided by
q∞Sref , whereq∞ = 1/2ρ∞u2

∞. In previous uncertainty workshops, e.g., Eca et al. [14], the drag
forces were nondimensionalized without the1/2 factor in the denominator. As a result, the current
drag results are a factor of 2 larger than earlier reported results. Both codes generally go to similar
results as the grid is refined, although forcd,v on the bottom wall it is not clear whether the results
will cross or stay together if the grid could be refined further.

Estimates of the uncertainty are also shown for the finest two grid levels. These estimates are
computed using the methodology described earlier, using the grid level in question plus 2 coarser
levels. Forcd,v on the bottom wall, CFL3D is well-behaved with an apparent (approximately)
second-order convergence, so its uncertainty levels are small; FUN3D on the other hand is con-
verging at less than first-order according to the finest three grids, so its uncertainty for this quantity
is higher. Forcd,v on the top wall, CFL3D exhibits oscillatory convergence, whereas FUN3D is
monotonically converging. Finally, both codes show well-behaved convergence and hence reason-
able uncertainty levels forcd, p. In this case, FUN3D appears closer to the grid-converged result on
any given grid, so its uncertainty levels are smaller than those of CFL3D.
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Table 2. Various quantities and their uncertainty on the finest grid for backward facing step

Code quantity fine grid value approx GCI, % U(cd)
CFL3D cd,v bottom wall 0.0523858 0.07 0.342654× 10−4

cd,v top wall 0.0944691 0.57 0.538355× 10−3

cp step 0.2010955 2.45 0.491621× 10−2

reattachment 6.01137 0.26 0.0154735
FUN3D cd,v bottom wall 0.0523199 2.69 0.140690× 10−2

cd,v top wall 0.0940830 0.65 0.609768× 10−3

cp step 0.2061919 0.52 0.106451× 10−2

reattachment 6.06012 0.70 0.0422834

The reattachment location is shown in Fig. 9. It appears that both codes will yield a reattachment
point on an infinitely-refined grid of approximately6.02.

Table 2 gives values for the various integrated quantities as well as the reattachment point on the
fine grid, along with the corresponding computed GCI and uncertainty.

Figs. 10, 11 and 12 show comparisons of wall pressure coefficient and skin friction coefficient
with experiment. Fine grid results along with error bars for both CFD and experiment are shown. Re-
sults for the two codes are almost indistinguishable, but agreement with experiment is only marginal
along the bottom wall. In particular,Cp is too low for CFD forx < 3, andCf is too low for
CFD both over the first half of the bubble as well as downstream of reattachment. Interestingly, the
location for reattachment (whereCf passes through zero) appears to agree very well with the exper-
imental location. Although not everywhere completely within the experimental error tolerance, the
computed top wall pressure coefficients agree very well with experiment.

Finally, Figs. 13 - 21 show comparisons of profiles at 3 locations downstream of the step with
experiment. Fine grid results along with error bars for both CFD and experiment are shown. Again,
results for the two codes are almost identical. Generally speaking, computed results compare very
well with experiment, with the notable exception ofv-velocity atx = 6H, which is underpredicted
significantly by the CFD.

5 Conclusions

Two RANS computer codes – FUN3D and CFL3D – have been analyzed using the manufactured
solution MS1, then applied to a backward facing step computation and compared with experiment.
For the manufactured solution on the finest grids, the expected asymptotic behavior was observed:
discretization error was either first- or second-order accurate, depending on the treatment of the tur-
bulence advection term. Both codes converged appropriately to the exact solution, although some-
times with oscillatory-convergence behavior. For the backward facing step, both codes were again
consistent with each other, in the sense that the solutions generally approached nearly identical re-
sults as the grid was refined. Comparisons with experiment included uncertainty estimates for both
CFD and experiment.
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Figure 1. Error in drag coefficient for MS1 on sg1 as a function ofh.
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Figure 2. Drag coefficients for MS1 on sg1 as a function ofh, showing oscillatory convergence on
the coarsest two grid levels for three of the methods.

9



Figure 3. L1-norm of errors inu, v, p, and ν̃ for MS1 on sg1 using FUN3D (cell-centered) and
CFL3D, both with second-order discretization for turbulence advection.

10



Figure 4. L1-norm of errors inu, v, p, andν̃ for MS1 on sg1 using FUN3D (node-centered) and
CFL3D, both with first-order discretization for turbulence advection.
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Figure 5. L1-norm of errors inu, v, p, and ν̃ for MS1 on sg2 using FUN3D (cell-centered) and
CFL3D, both with second-order discretization for turbulence advection.
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Figure 6. Convergence of various flow field quantities atx = 0.6, y = 0.001 for MS1 on sg1 and
sg2 using FUN3D (cell-centered) and CFL3D, both with second-order discretization for turbulence
advection.
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Figure 7. Hexahedral grid for the backward facing step case (showing only every 8th point in each
coordinate direction for clarity).
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Figure 8. Convergence of various surface integral quantities, including uncertainty estimates on the
finest 2 grid levels.
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Figure 9. Convergence of reattachment location behind step, including uncertainty estimates on the
finest 2 grid levels.
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Figure 10. Surface pressure coefficient along the bottom wall, including uncertainty error bars for
both CFD and experiment.
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Figure 11. Surface skin friction coefficient along the bottom wall, including uncertainty error bars
for both CFD and experiment.
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Figure 12. Surface pressure coefficient along the top wall, including uncertainty error bars for both
CFD and experiment.
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Figure 13. Profiles ofu/uref at x = 1H, including uncertainty error bars for both CFD and
experiment.
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Figure 14. Profiles ofv/uref atx = 1H, including uncertainty error bars for both CFD and experi-
ment.
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Figure 15. Profiles ofu′v′/u2
ref at x = 1H, including uncertainty error bars for both CFD and

experiment.
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Figure 16. Profiles ofu/uref at x = 4H, including uncertainty error bars for both CFD and
experiment.
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Figure 17. Profiles ofv/uref atx = 4H, including uncertainty error bars for both CFD and experi-
ment.
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Figure 18. Profiles ofu′v′/u2
ref at x = 4H, including uncertainty error bars for both CFD and

experiment.
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Figure 19. Profiles ofu/uref at x = 6H, including uncertainty error bars for both CFD and
experiment.
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Figure 20. Profiles ofv/uref atx = 6H, including uncertainty error bars for both CFD and experi-
ment.
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Figure 21. Profiles ofu′v′/u2
ref at x = 6H, including uncertainty error bars for both CFD and

experiment.
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